CIE XYZ色彩空间

CIE RGB色彩空间是RGB色彩空间之一,以单色(单一波长)原色的特定集合著称。

实验结果— CIE RGB色彩空间

CIE RGB色彩空间是RGB色彩空间之一,以单色(单一波长)原色的特定集合著称。

在1920年代,W. David Wright(Wright 1928)和John Guild(Guild 1931)独立进行了一系列人类视觉实验,提供了CIE XYZ色彩空间规定的基础。

CIE RGB原色的色域和原色在CIE 1931 xy色度图上的位置。

实验使用2度视角的圆形屏幕。屏幕的一半投影上测试颜色,另一半投影上观察者可调整的颜色。可调整的颜色是三种原色的混合,它们每个都有固定的色度,但有可调整的明度。

观察者改变三种原色光的明度直到观察到混合的颜色匹配了测试颜色。不是所有颜色都可使用这种技术匹配。当没有匹配的时候,可变数量的一种原色被增加到测试颜色上,用余下两种原色混合与它匹配。对于这种情况,增加到测试颜色上原色的数量被认为是负值。通过这种方式,可以覆盖完整的人类颜色感知。当测试颜色是单色的时候,可以把使用的每种原色的数量绘制为测试颜色的波长的函数。这三个函数叫做这个特定实验的“颜色匹配函数”。

CIE 1931 RGB颜色匹配函数。颜色匹配函数是匹配水平刻度标示的波长的单色测试颜色所需要的原色数量。

尽管Wright和Guild的实验使用了各种强度的各种原色,和一些不同的观察者,所有他们的结果都被总结为标准CIE RGB颜色匹配函数\overline{r}(\lambda), \overline{g}(\lambda)\overline{b}(\lambda),它们是通过使用标准波长为700 nm(红色)、546.1 nm(绿色)和435.8 nm(蓝色)的三种单色原色获得的。颜色匹配函数是匹配单色测验颜色所需要的原色的数量。这些函数展示于右侧的(CIE 1931)绘图中。注意\overline{r}(\lambda)\overline{g}(\lambda)在435.8nm处为零,\overline{r}(\lambda)\overline{b}(\lambda)在546.1nm处为零,而\overline{g}(\lambda)\overline{b}(\lambda)在700 nm处为零,因为在这些情况下测试颜色是原色之一。选择波长546.1 nm和435.8 nm的原色是因为它们是容易再生的水银蒸气放电的色线。1931年选择的700 nm波长难于再生为单色光束,选择它是因为眼睛的颜色感知在这个波长相当不变化,所以在这个原色波长上的小误差将对结果有很小的影响。

经过CIE的特别委员会的深思熟虑之后确定了颜色匹配函数和原色(Fairman 1997)。在图的短波和长波的侧的取舍点某种程度上是随意选择的;人类眼睛实际上能看到波长直到810 nm的光,但是敏感度要数千倍低于绿色光。定义的这些颜色匹配函数叫做“1931 CIE标准观察者”。注意: 不是指定每种原色的明度,而是将这种曲线常规标准化为在其下有固定的面积。这个面积按如下规定而固定为特定值

 \int_0^\infty \overline{r}(\lambda)\,d\lambda= \int_0^\infty \overline{g}(\lambda)\,d\lambda= \int_0^\infty \overline{b}(\lambda)\,d\lambda

结果的规范化颜色匹配函数经常对源照度按r:g:b比率1:4.5907:0.0601缩放、和为源辐射功率按比率72.0962:1.3791:1缩放来重新生成真正的颜色匹配函数。通过提议标准化原色,CIE建立了客观颜色表示法的一个国际系统。

给定这些缩放了颜色匹配函数,带有频谱功率分布I(\lambda)的一个颜色的RGB 三色刺激值给出为:

R= \int_0^\infty I(\lambda)\,\overline{r}(\lambda)\,d\lambda
G= \int_0^\infty I(\lambda)\,\overline{g}(\lambda)\,d\lambda
B= \int_0^\infty I(\lambda)\,\overline{b}(\lambda)\,d\lambda

这些都是内积,并可以被认为是无限维频谱到三维颜色的投影。


格拉斯曼定律

你可能会问:“为什么可以使用不同原色和它们的不同实际使用强度来总结Wright和Guild的结果?”还可能问:“要匹配的测试颜色不是单色会怎样?”。对这两个问题的答案在于人类色彩感知的(几乎)线性。这种线性被表达为格拉斯曼定律。

CIE RGB空间可以被用来以常规方式定义色度:色度坐标是rg:

r= \frac{R}{R+G+B},
g= \frac{G}{R+G+B}.


从Wright–Guild数据构造CIE XYZ色彩空间

在使用CIE RGB颜色匹配函数开发了人类视觉的RGB模型之后,特殊委员会的成员希望开发出与CIE RGB色彩空间有关的另一个色彩空间。它假定Grassmann定律成立,这个新空间通过线性变换而有关于CIE RGB空间。新空间将以三个新颜色匹配函数来定义:\overline{x}(\lambda)\overline{y}(\lambda)\overline{z}(\lambda)。带有频谱功率分布I(λ)的颜色的对应的XYZ 三色刺激值为给出为:

X= \int_0^\infty I(\lambda)\,\overline{x}(\lambda)\,d\lambda
Y= \int_0^\infty I(\lambda)\,\overline{y}(\lambda)\,d\lambda
Z= \int_0^\infty I(\lambda)\,\overline{z}(\lambda)\,d\lambda

在CIE rg色度图中展示规定CIE XYZ色彩空间的三角形构造。三角形Cb-Cg-Cr就是在CIE xy色度空间中的xy=(0,0),(0,1),(1,0)三角形。连接Cb和Cr的直线是alychne。注意光谱轨迹通过rg=(0,0)于435.8 nm,通过rg=(0,1)于546.1 nm,通过rg=(1,0)于700 nm。还有,均等能量点(E)位于rg=xy=(1/3,1/3)。

选择这个新色彩空间是因为它有如下性质:

  1. 新颜色匹配函数在所有地方都大于等于零。在1931年,计算是凭借手工或滑尺进行的,正值的规定有用于计算简化。
  2. \overline{y}(\lambda)颜色匹配函数精确的等于“CIE标准适应光观察者”(CIE 1926)的适应光发光效率函数V(λ)。它是描述感知明度对波长的变换的亮度函数。亮度函数可以构造为RGB颜色匹配函数的线性组合的事实是没有任何方式来保证的,但是被认为几乎是真实的,因为人类视觉的几乎线性本质。还有,这个要求的主要原因是计算简单。
  3. 对于恒定能量白点,要求为x = y = z = 1/3。
  4. 由于色度定义和要求xy为正值的优势,可以在三角形[1,0],[0,0],[0,1]内见到所有颜色的色域。在实践中必须把色域完全的充入这个空间中。
  5. \overline{z}(\lambda)可以在650 nm处被设置为零而仍保持在实验误差范围内。为了计算简单规定可以这样做。

用几何术语说,选择新色彩空间等于在rg色度空间中选择一个新三角形。在右侧的图形中,rg色度坐标展示在两个黑色轴上,还有1931标准观察者的色域。展示为上述要求所确定的是红色CIE xy色度轴。要求XYZ坐标非负意味着Cr, Cg, Cb形成的三角形必须包围标准观察者的整个色域。连接Cr和Cb的直线由\overline{y}(\lambda)函数等于亮度函数的要求来确定,它叫做alychne。\overline{z}(\lambda)函数在650 nm处为零的要求意味着连接Cg和Cr的直线必须是Kr区域内的色域的切线。这定义了点Cr的位置。均等能量点定义自x = y = 1/3的要求对连接Cb和Cg的直线做了限制,最后,色域充入空间的要求对此线作了第二个限制,它要非常靠近在绿色区域的色域,这规定了Cg和Cb的位置。上面描述的变换是从CIE RGB空间到XYZ空间的线性变换。CIE特殊委员会确定了标准变换如下:

 \begin{bmatrix}X\\Y\\Z\end{bmatrix}=\frac{1}{b_{21}} \begin{bmatrix} b_{11}&b_{12}&b_{13}\\ b_{21}&b_{22}&b_{23}\\ b_{31}&b_{32}&b_{33} \end{bmatrix} \begin{bmatrix}R\\G\\B\end{bmatrix}=\frac{1}{0.17697} \begin{bmatrix} 0.49&0.31&0.20\\ 0.17697&0.81240&0.01063\\ 0.00&0.01&0.99 \end{bmatrix} \begin{bmatrix}R\\G\\B\end{bmatrix}

在380 nm到780 nm之间的(间隔5 nm)CIE 1931标准色度观察者XYZ函数

要求3确定了XYZ颜色匹配函数的积分必须相等,可通过要求2确定的适应光发光效率函数的积分得到它。必须注意到制表的敏感度曲线有一定量的任意性在其中。单独的X、Y和Z敏感度曲线可以按合理的精度测量。但是整体的光度曲线(它事实上是这个三个曲线的加权和)是主观的,因为它涉及到问测试人两个光源是否有同样的明度,即使它们是完全不同的颜色。同样的,X、Y和Z的曲线的相对大小(magnitude)也是任意的。你也可以定义有两倍幅值的X敏感度曲线的有效色彩空间。这个新色彩空间将有不同的形状。CIE 1931和1964 XYZ色彩空间的敏感度曲线被缩放为有相同的曲线下面积。

在线客服