全反射

全内反射(英语:Total Internal Reflection),又称全反射,是一种光学现象。当光线经过两个不同折射率的介质时,部分的光线会于介质的界面被折射,其余的则被反射。但是,当入射角比临界角大时(光线远离法线),光线会停止进入另一界面,全部向内面反射。



全内反射(英语:Total Internal Reflection),又称全反射,是一种光学现象。当光线经过两个不同折射率的介质时,部分的光线会于介质的界面被折射,其余的则被反射。但是,当入射角比临界角大时(光线远离法线),光线会停止进入另一界面,全部向内面反射。

这只会发生在当光线从光密介质(较高折射率的介质)进入到光疏介质(较低折射率的介质),入射角大于临界角(critical angle)时。因为没有折射(折射光线消失)而都是反射,故称之为全内反射。例如当光线从玻璃进入空气时会发生,但当光线从空气进入玻璃则不会。最常见的是沸腾的水中气泡显得十分明亮,就是因为发生了全内反射。

开普勒(Johannes Kepler,1571-1630)在公元1611年于他的著作《Dioptrice》中,已发表全内反射的现象。


光学描述


如图一所示: 光线从折射率较高的 n_{1} 介质进入折射率较低的 {\displaystyle n_{2}} 介质: 当入射角 {\displaystyle \theta _{i}=\theta _{1}} 即少于临界角 {\displaystyle \theta _{c}} 时,光线同时发生趋离 {\displaystyle n_{2}} 介质(normal)的折射,以及向 n_{1} 介质的反射(图一中红色光线所示); 当入射角 {\displaystyle \theta _{i}=\theta _{2}} 即大于临界角 {\displaystyle \theta _{c}}时, {\displaystyle n_{2}} 介折射的光线消失,所有光线向 n_{1} 介质中(英语:normal)反射(图一中蓝色光线所示); 全内反射仅仅可能发生在当光线从较高折射率的介质(也称为光密介质)进入到较低折射率的介质(也称为光疏介质)的情况下,例如当光线从玻璃进入空气时会发生,但当光线从空气进入玻璃则不会。

{\displaystyle O_{1}\times \sin \alpha _{gr}=O_{2}\times \sin \beta }

例如:

  • {\displaystyle O_{1}}为光纤核心折射率 (英语:refractive index) \approx 1.5
  • {\displaystyle O_{2}} 为空气折射率 (英语:refractive index) = 1
  • \beta = 90^{\circ}
  • {\displaystyle \alpha _{gr}}=未知

{\displaystyle {\displaystyle \arcsin }}{\displaystyle ((1\times \sin 90^{\circ })/1.5)=\alpha _{gr}}

那么空气和光纤核心临界角( {\displaystyle \theta _{c}})为 {\displaystyle \alpha _{gr}}


临界角

临界角(英语:Critical angle)是使得全内反射发生的最少的入射角。入射角是从折射界面的法线量度计算的。临界角(\theta _{c})可从以下方程计算

\theta _{c}=\arcsin {\frac  {n_{2}}{n_{1}}}

其中\!n_{2}是较低密度介质的折射率,及\!n_{1}是较高密度介质的折射率。这条方程是一条斯涅尔定律的简单应用,当中折射角为90°。 当入射光线是准确地等于临界角,折射光线会循折射界面的切线进行。以可见光由玻璃进入空气(或真空)为例,临界角约为48.7°。

上一篇
下一篇
在线客服